Sunday, February 3, 2019

Bucket Sort

Algorithm:

  • Create Buckets of same size as of the array
  • Distribute element of array into buckets
  • Sort each bucket(using any sorting algorithm) and add them back together
When to use:
  • When the elements in the array is uniformly distributed.
Time Complexity:
  • Best/Average: O(n+k) -takes n times to distribute each element to k buckets and k times to add them back together.
  • Worst: O(n2)- when all the elements fall into single bucket
Space Complexity:
  • O(n) - usually no extra space is required
In-place: yes
Stable:no

Python Implementation:
def bucket_sort(arr):
   n = len(arr)
   buckets = [[] for _ in range(n)]
   for i in range(n):
        b_index = arr[i]*n
        buckets[b_index] = arr[i]
    result = []
    for bucket in buckets:
          result = result+insertion_sort(bucket)
    return result

def insertion_sort(arr):
   j = len(arr)
   for i in range(j):
        j= i
        while j >0 and arr[j-1] > arr[j]:
            arr[j-1], arr[j] = arr[j], arr[j-1]
            j -= 1
    
       

Thursday, January 17, 2019

Quick Sort

Algorithm:
  • Select a pivot element in the array
  • Move the selected pivot to its correct location in array such that all elements on its left is less than it and all elements on the right are greater than it.
Time Complexity:
  • Best/Average: O(nlogn) -list is divided into two halves and it takes linear time to merge the list back.
  • Worst: O(n2)- when either largest or smallest element is selected as pivot. Also, when the list is already sorted.
Space Complexity:
  • O(1) - usually no extra space is required
In-place: yes
Stable:no

Python Implementation

arr = [1,2,5,4,9]
low = 0
high = len(arr)-1

def quick_sort(arr, low, high):
    if low < high:
        pi = partition(arr, low, high)
        quick_sort(arr,low,pi-1)
        quick_sort(arr,pi+1,high)
    return arr

def partition(arr, low, high):
    pivot = arr[high]
    i = low -1
    for j in range(low, high-1):
        if arr[j] < pivot:
            i += 1
            arr[j], arr[i] = arr[i], arr[j]
   arr[i+1], arr[high] = arr[high], arr[i+1]
   return i+1

         

Thursday, January 10, 2019

Merge Sort

Algorithm:
  • Iteratively Divide the list to two halves
  • Sort and Merge the divided list until one list remains recursively
Time Complexity:
  • Best/Worst/Average: O(nlogn) -list is divided into two halves and it takes linear time to merge the list back.
Space Complexity:
  • O(n) - usually no extra space is required
In-place: yes
Stable: yes

Python Implementation

def merge_sort(arr):
    m = len(arr)/2
    L = arr[:m]
    R = arr[m:]
    merge_sort(L)
    merge_sort(R)
    i = j = k = 0
   while i < len(L) and j < len(R):
       if L[i] < R[j]:
            arr[k] = L[i]
            i += 1
       else:
             arr[k] = R[j]
             j += 1
       k += 1
     
    while i < len(L):
           arr[k] = L[i]
           i += 1
           k += 1
    while j< len[R]:
           arr[k] = R[j]
           j += 1
           k += 1
         

Thursday, January 3, 2019

Insertion Sort

In insertion sort, the sorting task is similar to that of sorting a deck of cards.

Algorithm:
  1. Start at the beginning
  2. Find the next element and bring it to its sorted position
 Time Complexity:

  • Best: O(n) - when the list is already sorted
  • Worst: O(n2) - when required to reverse the entire list
Space Complexity:
  • O(1) - usually no extra space is required 
In-place: yes
Stable: yes

Python Implementation
def insertion_sort(arr):
    n = len(arr)
    for i in range(n):
        j = i
        while j > 0 and arr[j-1] > arr[j]:
            arr[j-1], arr[j] = arr[j], arr[j-1]
            j -= 1